BIG DATA AND ITS PROCESSING USING STATISTICAL METHODS
DOI:
https://doi.org/10.55640/Keywords:
Big Data, statistical analysis, data processing, descriptive statistics, inferential statistics, regression analysis, clustering, data mining, analytical methods, data volume, digital economy, forecasting, , data quality.Abstract
This article discusses the concept of Big Data, which is highly relevant in the current era, its main characteristics, and the processes of processing it using statistical methods. Due to the volume, velocity, and variety of Big Data, traditional analysis methods are insufficient, making it necessary to use specialized technologies and statistical methods for processing. The article analyzes the possibilities of deriving practical conclusions from Big Data using methods such as descriptive statistics, regression analysis, hypothesis testing, and clustering. Additionally, examples are provided of the application of Big Data in economics, medicine, marketing, banking, and public administration. The results show that effective use of Big Data is a key factor in optimizing management decisions and increasing competitiveness.
References
1. Khan, S., & Ahmad, M. (2020). Katta ma'lumotlar tahlilida statistik usullar. O'zbekiston Davlat Universiteti nashriyoti.
2. Ismoilov, S. (2022). Katta ma’lumotlar: nazariya va amaliyot. Toshkent: Axborot texnologiyalari markazi.
3. O‘zbekiston Respublikasi Statistikasi. (2021). Katta ma'lumotlar va analitik usullar. Toshkent: O‘zbekiston Respublikasi Vazirlar Mahkamasi.
4. Statistika va ma’lumotlar tahlili – O‘zbekiston Respublikasi Statistika Qo‘mitasi: https://stat.uz/uz
5.Tursunov, N. (2020). Katta ma’lumotlar tahlili va biznes qarorlar qabul qilish. Toshkent: Iqtisodiyot va boshqaruv nashriyoti.
6. Big Data va raqamli iqtisodiyot – Axborot texnologiyalari va kommunikatsiyalarini rivojlantirish vazirligi: https://www.mf.uz/uz
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

